Course Name: Introduction to Engineering Mathematics

Course Outcomes(CO):

At the end of this course, the students will be able:

- 1. to visualize and conceptualize the engineering problems.
- 2. to model the engineering problem mathematically using theory of calculus and matrices.
- 3. to determine the solution of the studied engineering problem from application point of view.
- 4. to validate the solution.
- 5. to implement the solution for engineering problem.

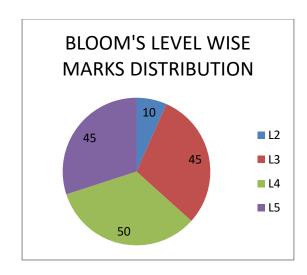
Modal Question Paper Total Duration (H: M): 3:00 Course: Introduction to Engineering Mathematics

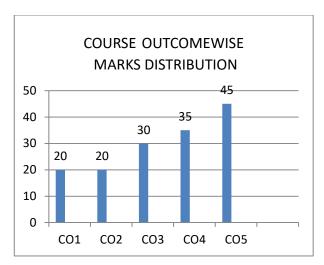
Maximum Marks: 100

Note:- Attempt all questions.

Q.No	Questions	Marks	co	BL
1a)	Discuss the applicability of Rolle's theorem for the function $f(x) = x $ in $[-1,1]$.	5	CO4	L4
1b)	Using Lagrange's Mean Value Theorem, Show that $sinx < x$ for $x > 0$.	5	CO4	L3
1c)	If in the Cauchy mean value Theorem $f(x) = sinx$, $g(x) = cosx$ then show that c is the arithmetic mean between a and b.	5	CO4	L3
1d)	A rectangular box open at the top is to have a volume of 32cc. Find the dimension of the box requiring least material for its construction	5	CO1	L5
1e)	Calculate the approximate value of $\sqrt{10}$ to four decimal places using Taylor's Theorem	5	CO4	L3
1f)	Expand e ^{ax} sinby in powers of x &y as far as terms of third degree.	5	CO5	L5
2a)	Prove that : $\Gamma m \Gamma \left(m + \frac{1}{2} \right) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma(2m)$, where m > 0.	5	CO3	L2
2b)	Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dx dy$ and hence evaluate it.	5	CO3	L3
2c)	Trace the curve $y^2(2a - x) = x^3$ by giving all its features in detail.	5	CO4	L2
2d)	Transform the double integral $\int_0^a \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} \frac{dydx}{a^2-x^2-y^2}$ into polar coordinates and then evaluate it.	5	CO4	L3
2e)	The part of the parabola $y^2 = 4ax$ cut off by the latus – rectum revolves about the tangent at the vertex. Find the surface of the reel thus generated.	5	CO1	L5

2f)	In estimating the number of bricks in a pile which is measured to be $(5m \times 10m \times 5m)$, count of bricks is taken as 100 bricks per m ³ . Find the error in the cost when the tape is stretched 2% beyond its standard length. The cost of bricks is Rs.2,000 per thousand bricks.	5	CO4	L4
3a)	If $u = xy + yz + zx$, $v = x^2 + y^2 + z^2$ and $w = x + y + z$, determine whether there is a functional relationship between u, v, w and if so, find it.	10	CO3	L4
3b)	Find the mass of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, the variable density being given by $\rho = xyz$.	10	CO1	L5
3c)	If the density at any point of the solid octant of the sphere $x^2 + y^2 + z^2 = 9$ varies as $2xyz$, find the co-ordinate of C.G. of the solid.	10	CO5	L5
4a)	Evaluate the line integral $\int_c (y^2 dx - x^2 dy)$ about the triangle whose vertices are (1,0), (0,1) and (-1,0).	10	CO3	L4
4b)	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = \vec{r} $, show that div (grad r^m) = m (m +1) r^{m-2} .	10	CO5	L3
4c)	Verify Green's theorem for $\int (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the boundary of the region defined by $x = 0$, $y = 0$, $x + y = 1$.	10	CO5	L4
5a)	Find non – singular matrices P and Q so that PAQ is a normal form where $A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$	10	CO2	L5
5b)	Determine the values of λ and μ such that the system $x+y+z=6$, $x+2y+5z=10$, $2x+3y+\lambda z=\mu$ has:(i) no solution (ii) unique solution (iii) infinite solutions. Also find the solution for $\lambda=2$ and $\mu=8$.	10	CO2	L4
5c)	A square matrix A is defined by A= $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$. Find the modal matrix P and the resulting diagonal matrix D of A.	10	CO5	L3





BL- Bloom's Taxonomy Levels(1 – Remembering, 2- Understanding, 3- Applying, 4- Analysing,

5- Evaluating, 6- Creating)

CO – Course Outcomes