Subject Code.....

ROLL NO.....

SEMESTER EXAMINATION 2022-23 1st year M.Tech. Thermal Engineering

Advanced Fluid Mechanics (TET-305)

Duration : 3 hrs

Max. Marks: 100

Note:- Attempt all questions. All question carry equal marks. In case any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q.1.	Answer any four parts of the following.	5×4=20
	a) How would you distinguish between hydrodynamically smooth and	
	rough boundaries?	
	b) Mention two most important characteristics of turbulent flow.	
	c) What are similarity laws?	
	d) For 2-D irrotational flow $\Phi = 2xy$ find the velocity at (1,2) and (2,2).	
	Determine also the discharge passing between streamlines passing between these points.	
	e) Discuss normaland oblique shock wave,	
	f) What is a stagnation state ?what do you mean by stagnation properties	
Q.2.	Answer any four parts of the following.	5×4=20
	a) State Buckingham's π theorem. Why is this theorem considered superior to Rayleigh's method of dimensional analysis?	
	b) Define shear velocity for turbulent flow in circular pipes.	
	c) Discuss Mach cone.	
	d) Discuss Newtonian and non-Newtonian fluids.	
	e) Explain vorticity and circulation	
	f) Velocity potential of a certain flow field is given as: $\psi = 4xy$. Check whether the stream function exists or not?	
Q.3.	Attempt any two parts of the following.	10×2=20
	B.	
	 a) The velocity potential is given by components are given by Φ = y²- x², determine the velocity components in x and y direction. Also show that Φ represents a possible case of fluid flow. b) Find the expression of displacement thickness and momentum thickness if velocity distribution in the boundary layer for a flat plate 	
	$\frac{u}{U} = \frac{y}{\delta}$ c) Explain phenomenon of boundary layer separation and also discus control of boundary layer separation.	
Q.4.	Attempt any two parts of the following.	10×2=20

		Water is flowing through a pipe of diameter 20 cm. The flow is turbulent. If the velocities at the pipe centre and 50 mm from the centre are 4 m/s and 3 m/s respectively, find the wall shear stress. A river reach of 2.0 km length with maximum flood discharge of 10000 m^3/s is to be physically modelled in the laboratory where maximum available discharge is 0.20 m^3/s . For a geometrically similar model based on equality of Froude number, find the length of the river reach (m) in the model. Drive of Navier-Stokes equation for Newtonian fluid	
Q.5.	Attem	pt any two parts of the following.	10×2=20
	a)	Discuss the velocity distribution in Couette flow between two parallel flat plates.	
	b)	The stream function for a flow is given by $\psi = xy$. Is the flow irrotational? Determine (a) u, v (b) the vorticity and (c) circulation	
	c)	Explain the effect of area change in subsonic and supersonic flows.	