Power System Stability (BEET 704)

Course Outcomes:

CO1: Create knowledge about the stability of power system

CO2: Learners will have knowledge on small-signal stability, transient stability and voltage stability.

CO3: Will be able to understand the dynamic behaviour of synchronous generator for different disturbances.

CO4: Learners will be able to understand the various methods to enhance the stability of a power system

Q	Question	Marks	CO	BL	PI
No.					
1a.	What is State Space Representation?	6	1		L
1b.	Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ Find the Eigen values of A.	8	2		
1.c	Explain Fundamental Concepts of Stability of Dynamic Systems.	6	1		
2.a	The sending end and receiving end voltages of a three phase	10	2		
	transmission line at a 200MW load are equal at 230KV. The per				
	phase line impedance is j14 ohm. Calculate the maximum steady				
	state power that can be transmitted over the line.				
2.b	A 400 MVA synchronous machine has H1=4.6 MJ/MVA and a	10	2		
	1200 MVA machines H2=3.0 MJ/MVA. Two machines operate in				
	parallel in a power plant. Find out Heq relative to a 100MVA base				
3. a	What are the properties of eigenvalues and eigenvectors?	6	1		
3. b	What is the difference between mass participation factor and mode	6	1		
	participation factor?				
3.c	Let $A = \begin{bmatrix} -3 & 15 \\ 3 & 9 \end{bmatrix}$ and let $B = \begin{bmatrix} -7 & -2 & 10 \\ -3 & 2 & 3 \\ -6 & -2 & 9 \end{bmatrix}$ Find the	8	2		
	following:				

Model Question Paper

	1. eigenvalues and eigenvectors of <i>A</i> and <i>B</i>			
	2. eigenvalues and eigenvectors of A^{-1} and B^{-1}			
	3. eigenvalues and eigenvectors of A^T and B^T			
	4. The trace of <i>A</i> and <i>B</i>			
	5. The determinant of A and B			
4. a	A 100 MVA, two pole, 50Hz generator has moment of inertia 40 x	10	2	
	103 kg-m2.what is the energy stored in the rotor at the rated speed?			
	What is the corresponding angular momentum? Determine the			
	inertia constant h.			
4. b	Find the approximate solution of the initial value	10	3	
	problem $\frac{dx}{dt} = 1 + \frac{x}{t}$, $1 \le t \le 3$			
	with the initial condition			
	x(1)=1, using the Runge-Kutta second order and fourth			
	order with step size of $h = 1$.			
5.a	Use Runge Kutta-method 2nd order and 4th order to find the	8	3	
	approximate solution of $y(0.1)$ and $z(0.1)$ as a solution of pair of			
	equations			
	$\frac{dx}{dt} = x + y,$			
	$\frac{dz}{dz} = y - x$			
	dx ³			
	With the initial conditions $y(0) = 1$, $z(0) = -1$. Take step size h =			
	0.1			
5.b	How do you assess transient stability? What is the effect of fault	6	3	
	clearing time on transient stability limit?			

5.c	What is small-signal stability analysis?	6	1	
6.a	Find y(0.2) for $y' = \frac{x-y}{2}$, y(0) = 1, with step length 0.1 using	10	3	
	Modified Euler method			
6.b	A synchronous generator having a reactance of 1 p.u is connected	10	4	
	to an infinite bus (V L0) through a transmission line. The line			
	reactance is 0.5 p.u. Th e machine has an inertia constant of 4MW			
	- sec/MVA. Under no load conditions, the generated emf is 1.1			
	p.u. Th e system frequency is 50 Hz. Calculate the frequency of			
	natural oscillations, if the generator is loaded to 75% of its			
	maximum power limit.			
7 . a	Explain the generator tripping and what are the types of control	10	4	
	measures for improving system stability?			
7.b	Write the expression for stabilizing signal washout stabilizer gain.	4	4	
7.c	Briefly explain the single-machine infinite bus	6	3	
	(SMIB)configuration.			
8. a	Write short notes on:	12	4	
	(i) Digital Stabilizer			
	(ii) Phase lead compensation			
	(iii) Delta –P-Omega stabilizer			
	(iv) Digital excitation			
	(v) Design of Phase lead compensation.			
	(v) Design of Finase lead compensation.			
8.b	Explain in detail with necessary equation and block diagram the	8	4	
	Supplementary control of synchronous machine excitation using			
	three types of PSS.			