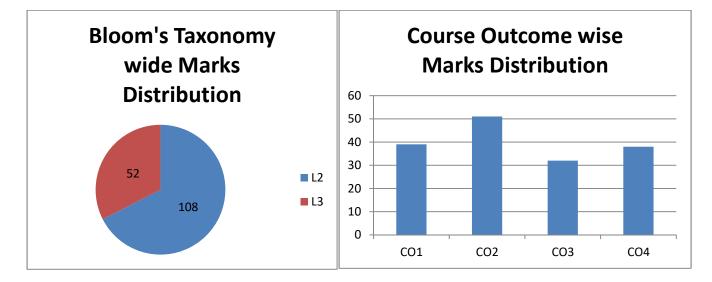
Course Name :- Power Quality & FACTS (BEET701)

Course Outcomes:


At the end of this course students will demonstrate the ability to:

- 1. Understand the characteristic of ac transmission and the effect of shunt and series reactive compensation,
- 2. Understand the working principle of FACTS devices and their operating characteristics,
- 3. Understand the basic concepts of Power Quality,
- 4. Understand the working principles of devices to improve power quality.

Model Question paper

Q.No.	Questions	Marks	CO	BL	PI
1a	Explain the various types of limits of a transmission line for AC	6	CO1	L2	1.2.1
	power transmission.				
1b	Derive the expression for real and reactive power flow through a line,	7	CO1	L2	1.2.1
	considering the resistance of the line negligible as compared to the				
	line reactance.				
1c	Describe the basic working principle of TCSC, with relevant circuit	7	CO2	L2	4.1.1
	diagram and control mechanism.				
2a	Explain the Hybrid shunt compensators with the operating	4	CO2	L2	4.1.1
	characteristics.	6		1.0	0.0.0
2b	Describe the classification of high power voltage source converters	6	CO3	L2	2.2.2
	for high voltage AC transmission.	10	<u> </u>	1.2	121
2c	Explain the principle of space vector PWM technique with relevant	10	CO3	L2	1.3.1
3a	diagram. Define and explain the following terms:-	10	CO3	L2	1.3.1
Ja	i. Amplitude modulation index	10	005	LZ	1.5.1
	ii. Frequency modulation index				
	iii. Dead time effect				
	iv. CBEMA curve.				
3b	Describe the principle of selected harmonic elimination PWM	10	CO2	L3	1.3.1
	technique with an example.				
4a	Explain the principle of static phase shifting transformers and their	10	CO4	L3	1.2.1
	application in AC transmission system.				
4b	Write down a brief note on terms below :	10	CO2	L2	1.2.1
	i. Voltage stability				
	ii. Sub-synchronous resonance				
5a	Describe the operating principle and various control schemes for	10	CO4	L3	2.1.1
<u></u>	SSSC, with block diagram.	10	004	1.0	0.0.1
5b	Explain the basic types of power quality issues of an electrical power	10	CO4	L2	2.3.1
6.0	system with the relevant waveforms. Describe the principle of operation of UPFC with the schematic	8	CO4	L2	2.3.1
6a		0	04	LZ	2.3.1
6b	diagram. Explain how a shunt compensator and series compensator can	8	CO2	L2	2.1.2
00	improve the transient stability of the power system, with relevant			12	2.1.2
	assumptions.				
6c	An Static VAR Compensator (SVC) of 5x 4kVAR capacitive rating is	4	CO2	L2	1.3.1
	installed at a bus. If the required kVAR at an instant is 13kVAR what				
	will be the on-off state of each part of the SVC.				
7a	A 3-bus system has two generators with real power generation of	6	CO1	L2	1.3.1

			,		
	2000 MW at bus 1 and 1000 MW at bus 2 and load of 3000 MW at				
	bus 3. Suppose line 1-2, 2-3 and 1-3 have continuous rating of 1000				
	MW, 1250 MW and 2000 MW respectively and line reactance of 10				
	ohm, 5 ohm and 10 ohm respectively.				
7b	A 3-phase, 500 kV, 1800 MVA transmission line of length 200 km	6	CO1	L2	1.3.1
	require a series compensator to be installed of 25% of line rating.				
	Find the power and voltage rating of the series compensator. Consider				
	1%/10km voltage drop.				
7c	Write down the definition of the following:-	8	CO1	L3	2.4.4
	i. STATCOM				
	ii. FACTS controller				
	iii. IPFC				
	iv. TCPST or SPST				
8a	What will be the uumber of steps and magnitude of the output voltage	6	CO3	L2	1.3.1
	across terminals a and b . How the output voltage can be 7V and 11V	-	_		_
	across terminals a and b.				
8b	Give a brief comparison of HVDC and FACTs technology of high	6	CO1	L3	2.4.4
	power transmission along with possible benefits from FACTS				
	technology.				
8c	Describe the basic principle of Phase angle regulator and voltage	8	CO2	L3	2.4.4
	regulator for AC transmission system.				

BL - Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6 Creating)

CO – Course Outcomes

PO – Program Outcomes; PI Code – Performance Indicator Code.