BEET- 502 Power Systems- II

Course Outcomes:

CO1: Create computational models for analysis power systems and able to understand per unit system.

CO2: Analyse a power system network under Symmetrical Conditions to discriminate Positive Sequence, Negative & zero sequence system.

- CO3: Evaluate load flow computations for an interconnected power system.
- CO4: Illustrate power system operation and transient control.
- CO5: Test the stability control of a power system.

	Model Question Paper				
Q No.	Question	Ī			
1a.	What do you understand by one line diagram? What is the difference between one line diagram and impedance diagram? Explain with the help of examples.				
1b.	Discuss per unit system with advantage and Drawback. Explain the per unit representation of the Transformer.				
1.c	Discuss the different kinds of the faults occurring under unloaded condition of synchronous generator.				
2. a	A synchronous generator is rated 25MVA, 11 kv. It is star connected with the neutral point solidly grounded. The generator is operating at no load rated voltage. Its reactances are $X^{2}=X_{2}=0.20$ pu and $X_{0}=0.08$ pu. calculate the symmetrical sub transient line currents for (i) Single line to ground				
	fault (ii) Double line to ground fault				
	(iii) Double line fault (iv) phase fault Symmetrical three				
	Compare these currents and comment.				
2.b	Explain surge impedance and velocity of propagation of travelling wave. Show that the velocity of a travelling wave can be given by $v = \frac{1}{\sqrt{Lc}}$.				
3. a	What is Bewley's Lattice Diagram? Describe Advantages of Bewley's Lattice Diagrams.	t			
3.b	Derive Gauss Seidel Algorithm for power flow analysis Also comparison between G-S and N-R method of power flow solution?				
3.c	A loss free generator supplies 50 MW to an infinite bus, the steady-state limit of the system being 100 MW. Determine whether the generator will remain in synchronism if the prime mover input is abruptly increased by 30 MW.				
4. a	A system has Sbase = 100 MVA, calculate the base current for a) Vbase = 230 kV b) Vbase = 525 kV Then using this value, calculate the actual line current and phase voltage where I =95.4 pu, and V				

Model Ouestion Paper

	=5.0pu at both 230 kV and 52	5 kV.				
4.b	3 substations A, B and C are s	paced 75 ki	m apart as show	wn in figure 4.10.	B and C are connected	T
	together by a cable (velocity of					
	overhead lines (velocity of pro-					
	of the lines are shown alongside the lines. The overhead lines beyond A and C on either side are					
	extremely long and reflection					
	considered from their far ends					
	substations, at an instant 1 m		Itage surge of i	nagnitude unity a	nd duration ³ / ₄ reaches the	
5	substation A from the outside Discuss the classification of the		r the new or flo	w on lucia What	$\mathbf{V} = \mathbf{V} + \mathbf{V}$	_
5. a			i the power no	ow allalysis. what	is these Explain the	
	development of the power flo	1	· 1	1 1 1 1'.'	<u> </u>	_
5.b	Discuss the different kinds of					
5. c	Explain the computational pro		the load flow s	olution using Gau	iss Siedel method, when the	
	system contains all three buse					_
6. a	Discuss protection of the equi					
	Explain the term travelling wa		-		-	
	transmission line such having					
	impedance of 50Ω . If short pu	lses have m	nagnitude 10 k	v travel along the	first line towards the	
	junction. Determine from first	principles	the magnitude	of the first and se	cond pulses entering the	
	second lin. Stay any assumpti	on made.				
6.b	What is Newton Raphson Me	hod, explai	n procedure ar	d draw Flowchar	t For Newton Raphson	T
	Method with advantages.					
7 . a	Write a short note on the follo	wing				
	(i) Synchronous machine					
	(ii) Transmission line	•	1 0 4	· · 1· 1		_
7.b	Explain what is meant by the the line constants.	surge imped	ance of a trans	smission line and	derive its value in terms of	
7.0	Derive Gauss Seidel Algorith	n for nowe	r flow analysis	Also comparison	hetween G-S and N-R	┿
7.c	method of power flow solutio	-	i now analysis	Also comparison	between 0-5 and w-K	
0	1		ing aquation of	fa maahina aann	acted with infinite bug	+
8. a	Discuss the steady state stabil				s connected in at the midpoint	
	of transmission line. Determin					
		e ine stead			5 condition	
		0.2001	·····			
		0.3pu	j 0.3p			
	E=1.2pu	5		infinite bus		
		ΤĴ	j 0.6pu		v=1.0 pu	
	X _{dg} =j 0.8pu		v=1.	0 มน	Ĩ	
	Tug J 0.0pu			1		
			fig	.1		
	(i)				With inductor switch S	
	is open					
	r					1

	(ii)	With inductor switch S
		is closed
	(iii)	With inductor replaced
		by a capacitor of the same per unit reactance.
	D' 1	
8.b	Discuss the p	oint by point method for solving swing equation for transient stability of a power system