Model Question Paper Total Duration (H:M):3:00 Course: Operation Research (BMET-504) Maximum Marks: 100

Q.No	Questions									СО	BL	PI
1a	What are the characteristics of Operation Research?								6	CO1	L1	
1b	Discuss the practical applications of Transportation and									CO2	L2	
1c	How degeneracy is resolved in Simplex method? Explain									CO2	12	
2a	Explain following terms used in PERT (i) Pessimistic time (ii)									CO5	L1	
	Optimistic time (iii) Most likely time.											
2b	Explain the	Maximin-Mi		6	CO4	L2						
2c	Solve the following LPP using Simplex method:									CO2	L5	
	Ma	aximize $Z = 4$										
	Subject to $X_1 + X_2 + X_3 = 10$ $X_1 - X_2 > 1$											
	$x_1 - x_2 \le 1$ $2X_1 + 3X_2 + X_3 \le 30$											
		Х										
3a	Form the dual of the following primal problem.									CO2	L2	
	$\begin{array}{c} \text{Minimize } Z=20X_1 + 40X_2 \\ S_1 \text{ binot } Line = 2X_1 + 20X_2 \\ \end{array}$											
	Subject to $2X_1 + 20X_2 \ge 40$ $20X_{1+} 3X_2 \ge 20$											
	$ \frac{20X_1 + 3X_2 \ge 20}{4X_1 + 15X_2 \ge 30} $											
	X_1 and $X_2 \ge 0$											
3b	Explain the procedure of Simplex method to solve a linear								6	CO2	L2	
	programmin	g problem.	problem.									
3c	Solve by the dual simplex method the following LPP.								8	CO2	L5	
	Minimize $Z = 5X_1 + 6X_2$											
	Subject to $X_1 + X_2 \ge 2$											
	$4X_1 + X_2 \ge 4$ $X_1 + X_2 \ge 0$											
		21										
4a	Explain MODI method as applied to transportation problem giving							ing	6	CO2	L2	
	example.											
46	Find only in	itial solution	to the	nroble	m aive	an hali	w by VAM		6	603	15	
40	method.	illai solulioli		6	COZ	LS						
				DE	STINA	TION	IS					
			D1	D2	D3	D4	SUPPLY					
	C	RIGIN O1	4	6	8	13	50					
	C	ORIGIN O2	13	11	10	8	70					
	C	ORIGIN O3	14	4	10	13	30					
		DIGIN 04	0	11	12	8	50					
		KIOIN 04	,	11	15	0	50					
	D	EMAND	25	35	105	20						
			_			-						
4c	At a car serv	vice centre, ca	ars arri	ive acc	cording	to Po	isson process		8	CO4	L5	
	with mean 3	with mean 3 per hour. The time for servicing each car is										
	exponentiall	xponentially distributed with mean 15 minutes per car. The										

	facility can handle 1 car at a time. Compute: (i) Average queue length (ii) Average number of cars in the queuing system (iii)				
	Waiting time in the system and (iv) Percent utilization of service.	_			
5a	Explain various basic steps in PERI/CPM techniques.	6	CO4	L2	
5b	At a car service centre, cars arrive according to Poisson process with mean 3 per hour. The time for servicing each car is exponentially distributed with mean 15 minutes per car. The facility can handle 1 car at a time. Compute: (i) Average queue length (ii) Average number of cars in the queuing system (iii) Waiting time in the system and (iv) Percent utilization of service.	6	CO4	L5	
5c	The owner of a small machine shop has four mechanics available to assign jobs for the day. Five jobs are offered with expected profit for each mechanic on each job which are as follows: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	CO2	L5	
6a	Assuming that the expected times are normally distributed find the probability of meeting the schedule date as given for the network. Job 1-2 1-3 2-4 3-4 4-5 3-5 a (days) 2 9 5 2 6 8 m(days) 5 12 14 5 6 17 b(days) 14 15 17 12 12 20 Scheduled project completion date is 30 days. Also find the date on which the project manager can complete the project with a probability of 0.90.	10	CO5	L5	
6b	A small maintenance project consists of the following jobs whose precedence relationships is given below: Job 1- 1- 2- 2- 3- 3- 4- 4- 5- 6- 2 3 3 5 4 6 5 6 6 7 Duration 15 15 3 5 8 12 1 14 3 14 (Days) From the above information, you are required to: (i) Draw an arrow diagram representing the project. (ii) Find the total float for each activity. (iii) Determine the critical path and total project duration.	10	CO5	L5	