Model Question Paper Total Duration (H:M):3:00 Course: Mechanical Measurement and Control (BMET-503) Maximum Marks: 100

Q.No	Questions	Marks	СО	BL
1a	Differentiate between the following	5	CO1	L1
	a. Accuracy and resolution			
	b. Systematic and random errors			
1b	A quartz piezoelectric crystal having a thickness of 2 mm and a	5	CO2	L5
	voltage sensitivity of 0.055 V \cdot m/N is subjected to a pressure of			
	200 psi. Calculate the voltage output.			
1c	A commercial force sensor uses a piezoelectric quartz crystal as the	5	CO3	L5
	sensing element. The quartz element is about 0.2 in. thick and has a			
	cross section of about 0.3 in. by 0.3 in. The sensing element is			
	compressed in the inickness direction when a load is applied over			
	this cross section. The output voltage is measured across the			
1 d	A hole and shaft have a basic size of 25 mm and are to have a	-	604	15
10	A note and shart have a basic size of 25 min, and are to have a clearance of 0.02 mm and a	5	C04	L5
	minimum clearance of 0.01 mm. The hole tolerance is to be 1.5			
	times the shaft tolerance. Determine: limit for both hole and shaft			
	(a) using a hole basis system (b) using a shaft basis system.			
2a	A mechanical engineering student wishes to determine the internal	10	CO3	15
	pressure existing in a diet soda can. She proceeds by carefully	10	000	20
	mounting a single-element strain gage aligned in circumferential			
	direction on the centre of the soda can, as shown in the figure			
	below. After wiring the gage properly to a commercial strain			
	indicator, she "pops" the flip-top lid, which relieves the internal			
	pressure. She notes that the strain indicator reads -400 μ strain. If			
	the can body is made of aluminium with a thickness of 0.010 in.			
	and a diameter of 2.25 in., what was the original internal pressure			
	of the sealed can?			
	(30)			
	Cimentonia			
	strain gage			
32	Consider a mercury-in-glass thermometer as a temperature-	5	CO1	11
54	measuring system. Discuss the various stages of this measuring	5	001	
	system in detail.			
3b	A force cell uses a resistance element as the sensing element It is	5	CO3	L5
	connected in a simple current-sensitive circuit in which the series			
	resistance Rm is 100 ohms, which is one-half the nominal			
	resistance of the force cell. Determine the current for force inputs			
	of (a) 25%, (b) 50%, and (c) 75% of full range if the input voltage			
	is 10 V.			
3c	The linearized model of the pendulum in the upright position is	5	CO5	L5
1	characterized by the matrices			

	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = 0.$			
3d	Show how strain gages may be mounted on a simple beam to sense temperature change while being insensitive to variations in beam loading.	5	CO3	L1
4a	Set up test procedures you would use to estimate, with the aid only of your present judgment and experience, the magnitudes of the common quantities listed. (a) Distance between the centrelines or two holes in a machined part (b) Weight of two small objects of different densities (c) Time intervals (d) Temperature of water (e) Frequency of pure tones	10	C01	L5
5a	Water at 15°C and 650kPaflows through a 15 x 10 cm (15-cm pipe and 10-cm throat diameter) as-cast venturi tube. A differential pressure of 25kPa is measured. Calculate the flow rate (a) in kg/min and (b) in m ³ /h.	5	CO3	L4
5b	Determine the factor for converting volume flow rate in cm ³ /s units to gal/min.	5	CO1	L2
5c	What is LVDT? How it is useful in the measurement of displacement and pressure.	5	CO2	L2
5d	Differentiate between the transducers and sensors.	5	CO1	L2
6a	Differentiate between servo pressure transducer and ring balance	5	CO2	L1
6b	 A 500-Hz sine wave is sampled at a frequency of 4096 Hz. A total of 2048 points are taken. (a) What is the Nyquist frequency? (b) What is the frequency resolution? (c) The student making the measurement suspects that the sampled waveform contains several harmonics of 500 Hz. Which of these can be accurately measured? What happens to the others? 	10	CO2	L4
6c	The two resistors R and Rs are connected in series. The voltage drops across each resistor are measured as $E = 10 \text{ V} \pm 0.1 \text{ V} (1\%)$ $E_s = 1.2 \text{ V} \pm 0.005 \text{ V} (0.467\%)$ along with a value of $R_s = 0.0066 \ \Omega \pm 1/4\%$ From these measurements determine the power dissipated in resistor R and its uncertainty.	5	C01	L5