Model Question Paper Total Duration (H:M):3:00 Course: Heat and Mass Transfer (BMET-501) Maximum Marks: 100

Q.No	Questions	Marks	CO	BL	PI
1a	What are the heat exchanger? Where they are used?	5	CO1	L1	
1b	Show that total emissive power is π times the intensity	5	CO4	L2	
	radiation.				
1c	Hot oil is being cooled from 160°C to 110°C in a parallel	5	CO5	L3	
	flow heat exchanger by water entering at 24°C and exiting at				
	60°C. Determine the outlet temperature of both streams if the				
	heat exchanger is made counter flow.				
1d	Define fin efficiency and fin effectiveness. What are the	5	CO2	L1	
	general types of fins and their specific applications?				
2a	Drive an expression for logarithmic mean temperature	8	CO5	L3	
	difference of parallel flow heat exchanger and state the				
26	assumption clearly. Air at 20°C and 1 atm flows over a flat plate at 40 m/s. The	8	602	L4	
2b	plate is 80 cm long and is maintained at 60°C. Assuming unit	ð	CO3	L4	
	depth in z-direction, calculate the heat transfer rate from the				
	plate. (Properties of air at 40°C are: Pr =0.7, k=0.02723 W/m				
	K, $c_p=1.007 \text{ kJ/kg K}$ and $\mu=1.906 \text{ x} 10^{-5} \text{ kg/ms}$.				
3a	What is mean by fouling factor? How does it affect the	5	CO5	L1	
	performance of a heat exchanger?	_			
3b	What is the displacement and energy thickness in forced	5	CO3	L1	
	convection? Derive their expressions				
3c	Explain the mass transfer processes.	5	CO5	L1	
3d	What is Grashof number. What is its physical significance?	5	CO3	L2	
4a	Describe the lumped heat capacity method in detail.	8	CO2	L1	
4b	Derive the expression for the effectiveness of a counter flow	8	CO5	L2	
	type heat exchanger				
4c	An aluminium (k=185 W/mK) pipe of inner diameter 10 cm	8	CO1	L4	
	and outer diameter 12 cm carrying steam at 110°C loses heat				
	to the room air at 30°C having $h=15$ W/m ² K. Find (i) the rate				
	of heat transfer (ii) the percentage reduction in the heat				
	transfer if an insulation (k=0.2 W/mK) of 5 cm thickness				
5 -	covers the pipe. A hybrid string with $(z = 865 hg/m^3 h = 0.14 W/mV = 1.78)$	10	602	1.4	
5a	A lubricating oil ($\rho = 865 \text{ kg/m}^3$, $k = 0.14 \text{ W/mK}$, $c_p=1.78 \text{ kJ/kg K}$, and $v = 9 \text{ x} 10^{-6} \text{ m}^2/\text{s}$) at 60°C enters a 1 cm	10	CO3	L4	
	diameter tube with a velocity of 3.5 m/s. Calculate the tube				
	length required to cool the oil to 45° C. (T _w = 30° C and,				
	Dittus-Boelter equation $Nu_d = 0.023$ (Re _d) 0^{-8} (P _r) ^{0.3}).				
5b	Explain the boiling heat transfer.	5	CO5	L1	
50 50	What is thermal insulation and overall heat transfer	5	CO1	L1	
	coefficient.	-			
	Planck's constants: $C_1 = 3.743 \times 10^8 W \mu m^4/m^2$ and $C_2 = 1.4387 \times 10^4 \mu m K$; Wien's				
displacement law constant = 2897.6 μm K. Stefan-Boltzmann constant = 5.67 x 10 ⁻⁸ W/m ² K ⁴					