Course Name: Electromagnetic Field Theory (BEET504)

Course Outcomes:

At the end of the course the student should be able to:

- CO1 To understand the various operations of vector calculus.
- CO2 To understand the basic laws of electromagnetism.
- CO3 To obtain the electric and magnetic fields for simple configurations under static conditions.
- CO4 To analyse time varying electric and magnetic fields.
- CO5 To understant Maxwell's equation in different forms and different media.

Model Question Paper

Q.No.	Questions	Marks	CO	BL	PI
	Given a vector field $\mathbf{H}=\rho z \cos \varphi \mathbf{a}_{\rho} + e^{-2} \sin \varphi/2 \mathbf{a}_{\varphi} + 2 \mathbf{a}_z$. At point				
1a	$(1,\pi/2,0)$, find (a) $\mathbf{H} \cdot \mathbf{a}_{\mathbf{x}}$, (b) $\mathbf{H} \times \mathbf{a}_{\theta}$.	6	CO1	L3	1.1.1
	i. A current filament carrying 15 A in the a_z direction lies				
1b	along the entire z-axis. Find H in rectangular co-ordinate				
	system at P(2,-4,4).				
	ii. Plane y=1 carries current K=50az mA/m. Find H at origin.	8	CO3	L3	1.2.1
	Define Poynting vector and derive the expression for it using				
	Maxwell's equation. How it follows the principal of energy				
1c	conservation ?	6	CO5	L2	2.1.2
	Using Gauss's Law find the expression for flux density at a				
	distance r due to point charge of Q C, infinite line charge of				
2a	charge density ρ_L C/m and infinite surface charge ρ_S C/m ² .	10	CO3	L2	2.3.1
	Define the following terms:-				
	i. Relaxation time				
	ii. Convection current				
	iii. Displacement current				
2b	iv. Skin depth (or penetration depth)	10	CO5	L1	4.1.1
	Determine the divergence and curl of the following vectors:				
	i. $\mathbf{P} = x^2 y z \mathbf{a_x} + x z \mathbf{a_z}$				
3a	ii. $\mathbf{Q} = \rho \sin \varphi \mathbf{a}_{\rho} + \rho^2 z \mathbf{a}_{\varphi} + z \cos \varphi \mathbf{a}_{z}$	8	CO1	L3	2.4.1
	State and prove the divergence theorem with the help of				
3b	relevant diagram.	6	CO2	L2	2.1.2
3c	Derive the expression for Ohm's Law in point form.	6	CO3	L2	1.1.1
	A plane wave in a non-magnetic medium has E =				
	$50\sin(10^8t + 2z)\mathbf{a}_v V/m$. Find the direction of wave				
	propagation, wavelength (λ), frequency (f) and magnetic field				
4a	intensity (H).	10	CO4	L3	2.4.1
	i. For a scalar field V, show that $\nabla \times \nabla V = 0$.				
4b	ii. For a vector field A , show that $\nabla \cdot \nabla \times \mathbf{A} = 0$.	10	CO1	L2	1.1.1
	Find the gradient and Laplacian of the following scalar fields:-				
	i. $V = \rho^2 z \cos 2\varphi$				
5a	ii. $U = 10r\sin^2\theta\cos\varphi$	8	CO1	L3	2.4.1
	State and prove the Stoke's theorem with the help of relevant				
5b	diagram.	6	CO2	L2	1.1.1
	Given $\mathbf{D} = z\rho \cos^2 \varphi \mathbf{a}_z C/m^2$, calculate the charge density at				
	$(1,\pi/4,3)$ and the total charge enclosed by the cylinder of radius				
5c	1 m with -2 < z < 2 m.	6	CO3	L3	2.4.1

	Given potential $V = \frac{10}{r^2} \sin \theta \cos \varphi$,				
	i. Find the electric flux density D at $(2, \pi/2, 0)$.				
	ii. Calculate the work done in moving a 10μ C charge from				
6a	point A(1, 30°, 120°) to B(4, 90°, 60°).	10	CO2	L3	2.4.1
	Show that the electrostatic energy density in an electric field E				
6b	in free space is given by $w = \frac{1}{2} \varepsilon_o E^2 \text{ J/m}^3$.	10	CO3	L2	1.1.1
	A tramsmission line operating at 500 MHz, has characteristic				
	impedance $Z_0=80 \Omega$, attenuation constant $\alpha = 0.04 \text{ Np/m}, \beta =$				
7a	1.5 rad/m. Find the line parameters R, L, G, C.	10	CO5	L2	1.2.1
7b	Write a brief note on the classification of magnetic materials.	4	CO4	L1	4.1.1
	Derive the expression for self-inductance per unit length of an				
	infinitely long solenoid with μ permeability of the core, having				
	cross sectional area of solenoid A, and n number of turns per				
7c	unit length.	6	CO4	L2	1.2.1
	State and explain the following:-				
	i. Ampere's circuital Law,				
	ii. Biot-Savart's Law.				
8a	iii.Uniqueness Theorem.	12	CO2	L2	1.2.1
	A charged particle of mass 2 kg and 1 C starts from origin with				
	velocity $3\mathbf{a}_y$ m/s and travels in the region of uniform magnetic				
	field $\mathbf{B}=10\mathbf{a}z$ Wb/m ² . At t = 4 s, calculate the velocity,				
8b	acceleration and kinetic energy of the particle.	8	CO4	L3	1.3.1

CO – Course Outcomes

PO – Program Outcomes; PI Code – Performance Indicator Code