Course Name: Digital Electronics (BECT303)

Course Outcomes:

At the end of the course the student should be able to:

CO1 Develop a digital logic and apply it to solve real life problems.

CO2 Analyze, design and implement combinational logic circuits.

CO3 Analyze, design and implement sequential logic circuits.

CO4 Classify different semiconductor memories.

CO5 Simulate and implement combinational and sequential circuits

.Model Question Paper

1a	Find the value of b	4	CO1	L2
	1. $(128)10 = (1003)b$			
	2. $(A2C)16 = (5054)_b$			
1b	Perform following conversion	4	CO1	L2
	1. $(1001101)_{\rm G} = ()_2$			
	2. $(5986)_{10} = ()_{BCD}$			
1c	Draw the circuit diagram that implements the expression	6	CO1	L3
	$x = \widetilde{ABC}(\widetilde{A+D})$ using gates with no more than three inputs.			
1d	Perform the minimization using tabular method	10	CO1	L2
	$Y = \sum_{m} (1,3,7,11,15) + \sum_{d} (0,2,5,8,14)$			
2a.	Describe BCD Adder Using neat Diagram. Why its called	8	CO2	L1
	Decimal Adder			
2b.	Implement 4-bit Binary Parallel Adder/Subtractor.	4	CO2	L3
2c.	Implement the following function with 8:1 MUX.	8	CO2	L3
	1. $F(w,x,y,z) = \sum_{m} (0,1,3,5,8,9,15)$			
	2. (A,B,C)= $\sum_{\pi} (2,3,4,7)$			
3a.	Implement Full subtractor circuit using only NAND gate.	6	CO2	L3
3b	Draw the circuit of S-R flip flop using NAND Gate and explain	8	CO3	L1
	in detail.			

3c	Explain working of master slave J-K flip flop.	6	CO3	L2
4a	What is counter? Design a 4bit Synchronous counter using JK	12	CO3	L1
	flip flop which can count only odd number with its waveform			
4b.	Explain briefly the operation of TTL NAND gate in tri state	8	CO4	L2
	output configuration.			
5a.	Write the difference between Static RAM and Dynamic RAM.	8	CO4	L1
5b.	What is Hazard? Explain different types of Hazard.	6	CO4	L1
5c.	Explain with diagram 3bit ring counter using D filp flop.	6	CO3	L3
6a.	A PN flip flop has four operations: clear to 0, no change,	10	CO3	L3
	complement and set to 1, when inputs P and N are 00,01,10,11			
	respectively.			
	1. Tabulate the characteristic table.			
	2. Derive the characteristic equation.			
	3. Tabulate the excitation table.			
	4. Show how the PN flip flop can be converted into D flip			
	flop			
6b.	Design a 4bit Magnitude Comparator and also implement	10	CO2	L2
	it with the help of basic gates.			
7a.	For the following state diagram ,design the synchronous	10	CO5	L4
	sequential by using D flip flop			
7b.	What is lock out condition in counter? Design a synchronous	10	CO5	L4

	cycle counter that will count the clock pulses through state 0,1 and 2 each time a start pulse is issued. Also examine the output with its timing diagram.			
8a.	Realize the following multiple output function using 3 inputs 4 product terms and 2 output PLA: $F1(x,y,z) = \sum_{m} (0,1,3,5)$ $F2(x,y,z) = \sum_{m} (3,5,7)$	10	CO5	L3
86	 Write short note on following 1. PROM 2. Memory Addressing 3. Sequential Access memory 	6	CO4	L1
8c	Design 32:1 MUX by using 8:1 Mux and 4:1 Mux.	4	CO2	L2