Course Name: Design and Analysis of Algorithms

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Discuss features of algorithms and analyze the differences between recursive and iterative algorithmic structure.
- 2. Analyze the role of design structures in structuring and manipulating solutions and implement respective programs.
- 3. Discuss the properties, operations, applications, strengths and weaknesses of the different algorithmic design approaches and their analysis.
- 4. Analyze, interpret and compare various problem solving strategies and their efficiency analysis
- 5. Discuss the storage management for efficient access of data

Model Question Paper for End Semester Examination							
Course Code:BCST603 C		Course Title: Design and Analysis of Algorithms					
Duration: 3 hrs		Max. Marks: 100					
Note: Answer five questions; any Four questions from each unit-I and unit-II and Two full question from unit-III, IV & V							
	Unit-I						
Q.No	Questions		Marks	со	PI Code	BL	
1 (a)	Suppose we wish to search a linked list of worst and average case of searching a rar	length n, discuss best, ndom element.	5	CO3	L3	1.4.4	
(b)	With the help of suitable code discuss travelling salesman problem.		5	CO2	L2	1.4.4	
(c)	Differentiate between Linear and non-linear data structures with suitable example.		5	CO1	L3	1.4.4	
(d)	Write an algorithms to print the nth node list	from end of a singly linked	5	CO2	L3	1.4.4	
(e)	Complete the function described below: Function Name: welcome Input Params: base address of string Return Type: base address of welcoming Description: A manager wants to generate employees.For inputstring "Parker", the fu "Welcome Parker". Do not use any inbuilt Unit-II	string e welcoming notes for its nction should produce string handling functions	5	CO1	L3	1.4.4	

2 (a)	You have been invited to a post-exam party.	5	CO3	L4	1.4.4
	attendees Nincreases, what is the order of growth to shake everyone's hand? Justify.				
	You meet everyone else and during each meeting, you talk about everyone else in the room. To what efficiency class does this belong to? Justify.				
(b)	Create a AVL Tree for: 50, 60, 80, 30, 20, 40, 70	5	CO3	L3	1.4.4
	Can you perform the three tree traversals on AVL tree? Justify youranswer.				
(c)	Bring out the differences between BFS and DFS algorithm. Also compare with respect to efficiency analysis.	5	CO4	L2	1.4.4
(d)	Write a algorithm for given below description:ALGORITHM CountLeafNodes(T)	5	CO3	L3	1.4.4
(-)	<pre>// Recursively counts the number of leaf nodes in the tree T</pre>		60.4	1.2	
(e)	 Which algorithm design technique is used for the given below algorithms/problems: i) Merge Sorting ii) Binary Search iii) Emotional knowed methods 	5	04	L2	1.4.4
	iv) 0/1 knapsack problemv) Travelling salesman problem				
	 vi) N-Queen's Problem vii) Graph coloring problem viii) Matrix chain multiplication ix) Job sequencing with deadline 				
	Prim's algorithm				
					<u> </u>
	Ont-in				
3(a)	Apply Quick Sort on the following: D I V I D E A N D C O N Q U E R	10	CO4	L3	1.4.4
	Write the efficiency analysis of quick sort (Best, Worst, and Average).				
(b)	Write a function to delete a node from a Binary Search Tree. Suitablycomment the code explaining each of the cases.	10	CO3	L3	1.4.4
(c)	A file consists of text data. Write a program to read and count the	10	CO5	L3	2.1.2
	number of appearances of 'is', 'am', 'are' .Write the individual count in a separate file.Also find the size of the file.				
	Unit-IV				
4(a)	With a help of a suitable program explain the concept of divide and conquer strategy and how it can be used to minimize the time complexity.	10	CO5	L3	1.4.4

(b)	Apply Dijkstra's Algorithm on the given graph.	10	CO4	L3	1.4.4
	$t \qquad 5 \qquad x$				
	6				
	7 2 2				
	y y y z				
	How is Bellman-Ford different from Dijkstra's Algorithm?				
	To what design technique does the algorithm belong to? Explain.				
(c)	Write the modules to implement the following using appropriate data	10	CO3	L3	1.4.4
	structure:				
	 Sort the given set of integers 				
	Unit-V				
5(a)	Using state space tree prove that:	10	CO1	L2	1.4.4
	1. There is no solution for a 2 queen problem				
	2. There are multiple solutions for a 4 queen problem				
(b)	Consider the circular list given below with string data:	10	CO2	L3	1.4.4
	last				
	$i \longrightarrow think \longrightarrow i \longrightarrow can$				
	Write a function which will display the output in following fashion:				
	can				
	ican				
	think i can				
	i think i can				
	At each line, the function should display data from all the nodes				
	present.After printing each line, an appropriate node has to be				
	deleted.				
	NULL				
	value.				
(c)	Describe NP –Hard and NP complete problems with example. Also	10	CO5	L2	1.4.4
1	differentiate among them.				

BL – Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating 6 - Creating)

CO – Course Outcomes

PO – Program Outcomes;

PI Code – Performance Indicator Code

Competency addressed in the Course and corresponding PerformanceIndicators

Competency	Performance Indicators
1.4: Demonstrate competence in computer science engineering knowledge	1.4.4 Apply machine dependent/independent features to build system modules.
2.1: Demonstrate an ability to identify and characterize an engineering problem.	2.1.2 : Identify processes, modules, variables, and parameters of computer based system to solve the problems.

Eg: 1.2.3: Represents Program Outcome "1", Competency "2" and Performance Indicators "3".